SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes

Genome Res. 2016 Jan;26(1):36-49. doi: 10.1101/gr.193433.115. Epub 2015 Nov 13.

Abstract

Synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) generates combinatorial genomic diversity through rearrangements at designed recombinase sites. We applied SCRaMbLE to yeast synthetic chromosome arm synIXR (43 recombinase sites) and then used a computational pipeline to infer or unscramble the sequence of recombinations that created the observed genomes. Deep sequencing of 64 synIXR SCRaMbLE strains revealed 156 deletions, 89 inversions, 94 duplications, and 55 additional complex rearrangements; several duplications are consistent with a double rolling circle mechanism. Every SCRaMbLE strain was unique, validating the capability of SCRaMbLE to explore a diverse space of genomes. Rearrangements occurred exclusively at designed loxPsym sites, with no significant evidence for ectopic rearrangements or mutations involving synthetic regions, the 99% nonsynthetic nuclear genome, or the mitochondrial genome. Deletion frequencies identified genes required for viability or fast growth. Replacement of 3' UTR by non-UTR sequence had surprisingly little effect on fitness. SCRaMbLE generates genome diversity in designated regions, reveals fitness constraints, and should scale to simultaneous evolution of multiple synthetic chromosomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chromosome Duplication
  • Chromosome Inversion
  • Chromosomes / genetics*
  • DNA, Fungal / genetics
  • Directed Molecular Evolution*
  • Gene Rearrangement*
  • Genome, Fungal*
  • High-Throughput Nucleotide Sequencing
  • Saccharomyces cerevisiae / genetics
  • Sequence Analysis, DNA
  • Sequence Deletion

Substances

  • DNA, Fungal