Purpose: The role of the central serotonin (5-hydroxytryptamine, 5-HT) system in feeding has been extensively studied in animals with the 5-HT family of transporters (5-HTT) being identified as key molecules in the regulation of satiety and body weight. Aberrant 5-HT transmission has been implicated in the pathogenesis of human obesity by in vivo positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging techniques. However, results obtained thus far from studies of central 5-HTT availability have been inconsistent, which is thought to be brought about mainly by the low number of individuals with a high body mass index (BMI) previously used. The aim of this study was therefore to assess 5-HTT availability in the brains of highly obese otherwise healthy individuals compared with non-obese healthy controls.
Methods: We performed PET using the 5-HTT selective radiotracer [(11)C] DASB on 30 highly obese (BMI range between 35 and 55 kg/m(2)) and 15 age- and sex-matched non-obese volunteers (BMI range between 19 and 27 kg/m(2)) in a cross-sectional study design. The 5-HTT binding potential (BPND) was used as the outcome parameter.
Results: On a group level, there was no significant difference in 5-HTT BPND in various cortical and subcortical regions in individuals with the highest BMI compared with non-obese controls, while statistical models showed minor effects of age, sex, and the degree of depression on 5-HTT BPND.
Conclusion: The overall finding of a lack of significantly altered 5-HTT availability together with its high variance in obese individuals justifies the investigation of individual behavioral responses to external and internal cues which may further define distinct phenotypes and subgroups in human obesity.
Keywords: Body mass index (BMI); Depression; Obesity; Positron emission tomography (PET); Serotonin; Serotonin transporter.