Canonical Notch activation in osteocytes causes osteopetrosis

Am J Physiol Endocrinol Metab. 2016 Jan 15;310(2):E171-82. doi: 10.1152/ajpendo.00395.2015. Epub 2015 Nov 17.

Abstract

Activation of Notch1 in cells of the osteoblastic lineage inhibits osteoblast differentiation/function and causes osteopenia, whereas its activation in osteocytes causes a distinct osteopetrotic phenotype. To explore mechanisms responsible, we established the contributions of canonical Notch signaling (Rbpjκ dependent) to osteocyte function. Transgenics expressing Cre recombinase under the control of the dentin matrix protein-1 (Dmp1) promoter were crossed with Rbpjκ conditional mice to generate Dmp1-Cre(+/-);Rbpjκ(Δ/Δ) mice. These mice did not have a skeletal phenotype, indicating that Rbpjκ is dispensable for osteocyte function. To study the Rbpjκ contribution to Notch activation, Rosa(Notch) mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and the NICD coding sequence, were crossed with Dmp1-Cre transgenic mice and studied in the context (Dmp1-Cre(+/-);Rosa(Notch);Rbpjκ(Δ/Δ)) or not (Dmp1-Cre(+/-);Rosa(Notch)) of Rbpjκ inactivation. Dmp1-Cre(+/-);Rosa(Notch) mice exhibited increased femoral trabecular bone volume and decreased osteoclasts and bone resorption. The phenotype was reversed in the context of the Rbpjκ inactivation, demonstrating that Notch canonical signaling was accountable for the phenotype. Notch activation downregulated Sost and Dkk1 and upregulated Axin2, Tnfrsf11b, and Tnfsf11 mRNA expression, and these effects were not observed in the context of the Rbpjκ inactivation. In conclusion, Notch activation in osteocytes suppresses bone resorption and increases bone volume by utilization of canonical signals that also result in the inhibition of Sost and Dkk1 and upregulation of Wnt signaling.

Keywords: Notch; Rbpjκ; Sost; bone remodeling; osteocytes.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bone Remodeling / physiology
  • Mice
  • Mice, Transgenic
  • Osteocytes / metabolism*
  • Osteogenesis / physiology
  • Osteopetrosis / metabolism*
  • Receptors, Notch / genetics
  • Receptors, Notch / metabolism*
  • Signal Transduction / physiology*

Substances

  • Receptors, Notch