Aim: Hepatic progenitor cells, called hepatoblasts, are highly proliferative and exhibit bipotential differentiation into hepatocytes and cholangiocytes in the fetal liver. Thus, they are the ideal source for transplantation therapy. Although several studies have been performed in vitro, the molecular mechanisms regulating hepatoblast differentiation in vivo following transplantation remain poorly understood. The aim of this study was to investigate an in vivo model to analyze hepatoblast bipotency and proliferative ability.
Methods: Hepatic transplantation model using Cre-inducible diphtheria toxin receptor-transgenic mice (iDTR), and albafpCre mice expressing Cre under the control of albumin and α-fetoprotein (AFP) regulatory elements were established. Fresh hepatoblasts were transplanted into diphtheria toxin (DT)-injected iDTRalbafpCre mice and we analyzed their differentiation and proliferation abilities by immunostaining and gene expression profiles.
Results: Fresh hepatoblasts transplanted into DT-injected iDTRalbafpCre mice engrafted and differentiated into both hepatocytes and cholangiocytes. Additionally, the number of engrafted hepatoblast-derived hepatocytes increased following partial hepatectomy and serial DT injections. Expression levels of hepatic functional genes in transplanted hepatoblast-derived hepatocytes were similar to that of normal hepatocytes.
Conclusion: In our iDTRalbafpCre transplantation model, fresh hepatoblasts could differentiate into hepatocytes and cholangiocytes. In addition, these donor cells were induced to proliferate by the following liver injury stimulation. This result suggests that this model is valuable for investigating hepatoblast differentiation pathways in vivo.
Keywords: bipotency; diphtheria toxin receptor; hepatoblast; transplantation.
© 2015 The Japan Society of Hepatology.