The utility of mini bronchoalveolar lavage (mBAL) and its applicability in metabolomics has not been explored in the field of human respiratory disease. mBAL, "an archetype" of the local lung environment, ensures a potent technique to get the snapshot of the epithelial lining fluid afflicted to human lung disorders. Characterization of the mBAL fluid has potential to help in elucidating the composition of the alveoli and airways in the diseased state, yielding diagnostic information on clinical applicability. In this study, one of the first attempts has been made to comprehensively assign and detect metabolites in mBAL fluid, extracted from human lungs, by the composite use of 800 MHz 1D and 2D NMR, J-resolved homonuclear spectroscopy, COSY, TOCSY, and heteronuclear HSQC correlation methods. A foremost all-inclusive sketch of the 50 metabolites has been corroborated and assigned, which can be a resourceful archive to further lung-directed metabolomics, prognosis, and diagnosis. Thus, NMR-based mBALF studies, as proposed in this article, will leverage many more prospective respiratory researches for routine clinical application and prove to be a viable approach to mirror the key predisposing factors contributing to the onset of lung disease.
Keywords: assignment; biofluids; lung disease; mini bronchoalveolar lavage fluid; two-dimensional NMR.