Etheno-DNA adducts are biomarkers for assessing oxidative stress. In this study, the aim was to detect the level of etheno-DNA adducts and explore the relationship between the etheno-DNA adducts and genotoxicity biomarkers of the diesel engine exhaust (DEE)-exposed workers. We recruited 86 diesel engine testing workers with long-term exposure to DEE and 99 non-DEE-exposed workers. The urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and etheno-DNA adducts (εdA and εdC) were detected by HPLC-MS/MS and UPLC-MS/MS, respectively. Genotoxicity biomarkers were also evaluated by comet assay and cytokinesis-block micronucleus assay. The results showed that urinary εdA was significantly higher in the DEE-exposed workers (p<0.001), exhibited 2.1-fold increase compared with the non-DEE-exposed workers. The levels of urinary OH-PAHs were positively correlated with the level of εdA among all the study subjects (p<0.001). Moreover, we found that the increasing level of εdA was significantly associated with the increased olive tail moment, percentage of tail DNA, or frequency of micronucleus in the study subjects (p<0.01). No significant association was observed between the εdC level and any measured genotoxicity biomarkers. In summary, εdA could serve as an indicator for DEE exposure in the human population.
Keywords: Comet assay; Diesel engine exhaust; Etheno-DNA adducts; Micronucleus; OH-PAHs.
Copyright © 2015 Elsevier B.V. All rights reserved.