A novel electrochemical biosensor was developed for the signal-on detection of sequence-specific DNA by exploiting potential-assisted Cu(I)-catalyzed azide-alkyne cycloaddition (φCuAAC) as an efficient approach for the labeling of hairpin-like oligonucleotide (hairpin) with electroactive probe. The hairpins, dually labeled with thiol and azide at either terminal, were firstly self-assembled on gold electrode and served as the capture probes for the specific recognition of target DNA. Upon hybridization with target DNA, the surface-confined hairpins were unfolded, liberating the azide-containing terminals away from electrode surface. Subsequently, the unfolded hairpins were conveniently and efficiently labeled with ethynylferrocene (EFC) via the φCuAAC. The quantitatively labeled EFC was finally measured via differential pulse voltammetry (DPV) for the signal-on electrochemical detection of sequence-specific DNA. The biosensor presented a good linear response over the range from 1pM to 1nM with a detection limit of 0.62pM. Results also revealed that it was highly specific and held a good detection capability in serum samples. Furthermore, the ability to chemoselectively label hairpin-like oligonucleotide with signal reporter by electrical addressing, together with the simplicity and efficiency of the φCuAAC, makes it compatible with microfluidic devices and microelectrode arrays to achieve the miniaturized and multiplexed detections.
Keywords: Cu(I)-catalyzed azide-alkyne cycloaddition; DNA; Electrochemical; Hairpin; Signal-on; Single-nucleotide polymorphism.
Copyright © 2015 Elsevier B.V. All rights reserved.