Production of phenylacetyl-homoserine lactone analogs by artificial biosynthetic pathway in Escherichia coli

Microb Cell Fact. 2015 Nov 25:14:191. doi: 10.1186/s12934-015-0379-1.

Abstract

Background: Quorum sensing (QS) networks are more commonly known as acyl homoserine lactone (HSL) networks. Recently, p-coumaroyl-HSL has been found in a photosynthetic bacterium. p-coumaroyl-HSL is derived from a lignin monomer, p-coumaric acid, rather than a fatty acyl group. The p-coumaroyl-HSL may serve an ecological role in diverse QS pathways between p-coumaroyl-HSL producing bacteria and specific plants. Interference with QS has been regarded as a novel way to control bacterial infections. Heterologous production of the QS molecule, p-coumaroyl-HSL, could provide a sustainable and controlled means for its large-scale production, in contrast to the restricted feedback regulation and extremely low productivity of natural producers.

Results: We developed an artificial biosynthetic process for phenylacetyl-homoserine lactone analogs, including cinnamoyl-HSL, p-coumaroyl-HSL, caffeoyl-HSL, and feruloyl-HSL, using a bioconversion method via E. coli (CB1) in the co-expression of the codon-optimized LuxI-type synthase (RpaI) and p-coumaroyl-CoA ligase (4CL2nt). In addition to this, we show the de novo production of p-coumaroyl-HSL in heterologous host E. coli (DN1) and tyrosine overproducing E. coli (DN2), containing the rpaI gene in addition to p-coumaroyl-CoA biosynthetic genes. The yields for p-coumaroyl-HSL reached 93.4 ± 0.6 and 142.5 ± 1.0 mg/L in the S-adenosyl-L-methionine and L-methionine feeding culture in the DN2 strain, respectively.

Conclusions: This is the first report of a de novo biosynthesis in a heterologous host yielding a QS molecule, p-coumaroyl-HSL from a glucose medium using a single vector system combining p-coumaroyl-CoA biosynthetic genes and the LuxI-type synthase gene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 4-Butyrolactone / analogs & derivatives*
  • 4-Butyrolactone / analysis
  • 4-Butyrolactone / biosynthesis
  • 4-Butyrolactone / chemistry
  • Chromatography, High Pressure Liquid
  • Coenzyme A Ligases / genetics
  • Coenzyme A Ligases / metabolism
  • Escherichia coli / metabolism*
  • Nicotiana / enzymology
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Quorum Sensing
  • Tyrosine / metabolism

Substances

  • Plant Proteins
  • homoserine lactone
  • Tyrosine
  • Coenzyme A Ligases
  • 4-Butyrolactone