Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional enzyme that is required for synaptic plasticity and has been proposed to be a primary molecular component of the etiology of alcohol addiction. Chronic alcohol intake upregulates CaMKIIα protein expression in reward-related brain regions including the amygdala and nucleus accumbens, and CaMKIIα activity in the amygdala is required for the positive reinforcing effects of alcohol, suggesting this system promotes consumption in the early stages of alcohol addiction. Alternatively, the medial prefrontal cortex (mPFC) is known to inhibit limbic activity via CaMKII-dependent excitatory projections and may, therefore, enable top-down regulation of motivation. Here we sought to remove that regulatory control by site-specifically inhibiting CaMKII activity in the mPFC, and measured effects on the positive reinforcing effects of sweetened alcohol in C57BL/6J mice. Infusion of the CAMKII inhibitor KN-93 (0-10.0 μg) in the mPFC primarily increased alcohol+sucrose reinforced response rate in a dose- and time-dependent manner. KN-93 infusion reduced response rate in behavior-matched sucrose-only controls. Importantly, potentiation of operant responding for sweetened alcohol occurred immediately after infusion, at a time during which effects on sucrose responding were not observed, and persisted through the session. These results suggest that endogenous CaMKII activity in the mPFC exerts inhibitory control over the positive reinforcing effects of alcohol. Downregulation of CaMKII signaling in the mPFC might contribute to escalated alcohol use.
Keywords: Addiction; Alcohol self-administration; CaMKII; KN-93; Positive reinforcement; Prefrontal cortex.
Copyright © 2015 Elsevier B.V. All rights reserved.