Ultrafast Optical Control of the Electronic Properties of ZrTe₅

Phys Rev Lett. 2015 Nov 13;115(20):207402. doi: 10.1103/PhysRevLett.115.207402. Epub 2015 Nov 10.

Abstract

We report on the temperature dependence of the ZrTe(5) electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T*∼160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of ZrTe(5).