The aim of this study was to uncover that unfolded protein response (UPR) contributed to the development of cisplatin resistance in osteosarcoma. MG-63 cells and SaOS-2 cells were exposed to cisplatin at presence or absence of 4-phenylbutyrayte (4-pba) and then analyzed by MTT assay and flow cytometry to determine the cell survival rates and apoptosis. Levels of glucose regulated protein 78KD (GRP78), C/EBP homologus protein (CHOP), cytoplasmic and nuclear NF-κB were detected by Western blot. Further, MG-63 cells and SaOS-2 cells were subjected to cisplatin with or without Bay 11-7082, a well-known inhibitor of NF-κB. After that, MTT assay and flow cytometry were used to determine the cell survival rates and apoptosis. Cisplatin and 4-PBA co-treatment significantly enhanced the cell apoptosis. Administration of cisplatin substantially increased the levels of GRP78 and CHOP. Moreover, mechanistic investigation uncovered that cisplatin promoted the levels of nuclear NF-κB whereas 4-PBA administration suppressed the cisplatin-induced accumulation of nuclear NF-κB level in osteosarcoma cells. Cisplatin combined with Bay 11-7082 obviously augmented MG-63 cells and SaOS-2 cells apoptosis when compared to that in osteosarcoma cells treated by cisplatin alone. Taken together, our data show that UPR protects osteosarcoma from cisplatin-mediated apoptosis through activation of NF-κB pathway. Therefore, targeting UPR may be a potential strategy to improve the osteosarcoma therapy.
Keywords: NF-κB; Osteosarcoma; UPR; chemoresistance; cisplatin.