Analysis of the Effects of the Bruton's tyrosine kinase (Btk) Inhibitor Ibrutinib on Monocyte Fcγ Receptor (FcγR) Function

J Biol Chem. 2016 Feb 5;291(6):3043-52. doi: 10.1074/jbc.M115.687251. Epub 2015 Dec 1.

Abstract

The irreversible Bruton's tyrosine kinase (Btk) inhibitor ibrutinib has shown efficacy against B-cell tumors such as chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma. Fcγ receptors (FcγR) on immune cells such as macrophages play an important role in tumor-specific antibody-mediated immune responses, but many such responses involve Btk. Here we tested the effects of ibrutinib on FcγR-mediated activities in monocytes. We found that ibrutinib did not affect monocyte FcγR-mediated phagocytosis, even at concentrations higher than those achieved physiologically, but suppressed FcγR-mediated cytokine production. We confirmed these findings in macrophages from Xid mice in which Btk signaling is defective. Because calcium flux is a major event downstream of Btk, we tested whether it was involved in phagocytosis. The results showed that blocking intracellular calcium flux decreased FcγR-mediated cytokine production but not phagocytosis. To verify this, we measured activation of the GTPase Rac, which is responsible for actin polymerization. Results showed that ibrutinib did not inhibit Rac activation, nor did the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester). We next asked whether the effect of ibrutinib on monocyte FcγR-mediated cytokine production could be rescued by IFNγ priming because NK cells produce IFNγ in response to antibody therapy. Pretreatment of monocytes with IFNγ abrogated the effects of ibrutinib on FcγR-mediated cytokine production, suggesting that IFNγ priming could overcome this Btk inhibition. Furthermore, in monocyte-natural killer cell co-cultures, ibrutinib did not inhibit FcγR-mediated cytokine production despite doing so in single cultures. These results suggest that combining ibrutinib with monoclonal antibody therapy could enhance chronic lymphocytic leukemia cell killing without affecting macrophage effector function.

Keywords: Btk; Fcγ receptor; cancer therapy; ibrutinib; immunotherapy; interferon; monocyte; signal transduction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenine / analogs & derivatives
  • Agammaglobulinaemia Tyrosine Kinase
  • Animals
  • Calcium Signaling / drug effects
  • Calcium Signaling / genetics
  • Humans
  • Interferon-gamma / genetics
  • Interferon-gamma / metabolism
  • Leukemia, Lymphocytic, Chronic, B-Cell / drug therapy*
  • Leukemia, Lymphocytic, Chronic, B-Cell / genetics
  • Leukemia, Lymphocytic, Chronic, B-Cell / metabolism
  • Leukemia, Lymphocytic, Chronic, B-Cell / pathology
  • Macrophages / metabolism*
  • Macrophages / pathology
  • Mice
  • Monocytes / metabolism*
  • Monocytes / pathology
  • Piperidines
  • Protein-Tyrosine Kinases / antagonists & inhibitors*
  • Protein-Tyrosine Kinases / genetics
  • Protein-Tyrosine Kinases / metabolism
  • Pyrazoles / pharmacology*
  • Pyrimidines / pharmacology*
  • Receptors, IgG / genetics
  • Receptors, IgG / metabolism*

Substances

  • Piperidines
  • Pyrazoles
  • Pyrimidines
  • Receptors, IgG
  • ibrutinib
  • Interferon-gamma
  • Protein-Tyrosine Kinases
  • Agammaglobulinaemia Tyrosine Kinase
  • BTK protein, human
  • Btk protein, mouse
  • Adenine