POLYPRENOL REDUCTASE2 Deficiency Is Lethal in Arabidopsis Due to Male Sterility

Plant Cell. 2015 Dec;27(12):3336-53. doi: 10.1105/tpc.15.00463. Epub 2015 Dec 1.

Abstract

Dolichol is a required cofactor for protein glycosylation, the most common posttranslational modification modulating the stability and biological activity of proteins in all eukaryotic cells. We have identified and characterized two genes, PPRD1 and -2, which are orthologous to human SRD5A3 (steroid 5α reductase type 3) and encode polyprenol reductases responsible for conversion of polyprenol to dolichol in Arabidopsis thaliana. PPRD1 and -2 play dedicated roles in plant metabolism. PPRD2 is essential for plant viability; its deficiency results in aberrant development of the male gametophyte and sporophyte. Impaired protein glycosylation seems to be the major factor underlying these defects although disturbances in other cellular dolichol-dependent processes could also contribute. Shortage of dolichol in PPRD2-deficient cells is partially rescued by PPRD1 overexpression or by supplementation with dolichol. The latter has been discussed as a method to compensate for deficiency in protein glycosylation. Supplementation of the human diet with dolichol-enriched plant tissues could allow new therapeutic interventions in glycosylation disorders. This identification of PPRD1 and -2 elucidates the factors mediating the key step of the dolichol cycle in plant cells which makes manipulation of dolichol content in plant tissues feasible.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / enzymology*
  • Arabidopsis / genetics
  • Arabidopsis / physiology
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Dolichols / metabolism*
  • Glycosylation
  • Mutation
  • Oxidoreductases / genetics
  • Oxidoreductases / metabolism*
  • Plant Infertility
  • Protein Processing, Post-Translational*

Substances

  • Arabidopsis Proteins
  • Dolichols
  • Oxidoreductases
  • polyprenol reductase