Porous solids composed of shape-persistent organic cage molecules have attracted considerable attention due to their important applications such as molecular separation, heterogeneous catalysis, and gas storage. In this study, an imine-linked porous organic cage (POC) CC10 diluted with a polysiloxane OV-1701 was explored as a novel stationary phase for high-resolution gas chromatography (GC). A wide variety of enantiomers belonging to different classes of organic compounds have been resolved on the coated capillary column, including chiral alcohols, esters, ketones, ethers, halohydrocarbons, epoxides, and organic acids. The fabricated column complements to commercial β-DEX 120 column and our recently reported CC3-R column for separating enantiomers, which indicates that the excellent chiral recognition ability of CC10 is not only interesting academically, but also has potential for practical application. In addition, CC10 also exhibits good selectivity for the separation of n-alkanes, n-alcohols, Grob mixture, and positional isomers. This work also indicates that this type of chiral POCs will become a new class of chiral selector in the near future.
Keywords: Capillary columns; Chiral separation; Gas chromatography; Porous molecular materials; Porous organic cage.
Copyright © 2015 Elsevier B.V. All rights reserved.