Random fiber networks are assemblies of elastic elements connected in random configurations. They are used as models for a broad range of fibrous materials including biopolymer gels and synthetic nonwovens. Although the mechanics of networks made from the same type of fibers has been studied extensively, the behavior of composite systems of fibers with different properties has received less attention. In this work we numerically and theoretically study random networks of beams and springs of different mechanical properties. We observe that the overall network stiffness decreases on average as the variability of fiber stiffness increases, at constant mean fiber stiffness. Numerical results and analytical arguments show that for small variabilities in fiber stiffness the amount of network softening scales linearly with the variance of the fiber stiffness distribution. This result holds for any beam structure and is expected to apply to a broad range of materials including cellular solids.
Keywords: Beam Structures; Elastic Materials; Heterogeneous Materials; Microstructures; Probability and Statistics.