Platelet-Derived Growth Factor Receptor-β Regulates Vascular Smooth Muscle Cell Phenotypic Transformation and Neuroinflammation After Intracerebral Hemorrhage in Mice

Crit Care Med. 2016 Jun;44(6):e390-402. doi: 10.1097/CCM.0000000000001425.

Abstract

Objective: Platelet-derived growth factor-BB activates platelet-derived growth factor receptor-β and promotes vascular smooth muscle cell phenotypic transformation. Elevated levels of non-muscle myosin IIB (SMemb) are found in secretory smooth muscle cells along with inflammatory mediators, such as intercellular adhesion molecule-1, which can amplify neutrophil infiltration into the brain. In the present study, we investigated the role of platelet-derived growth factor-BB/platelet-derived growth factor receptor-β following intracerebral hemorrhage-induced brain injury in mice, with emphasis on its ability to promote vascular smooth muscle cell phenotypic transformation followed by increased intercellular adhesion molecule-1 expression and elevated neutrophil infiltration in the vicinity of the hematoma. We also determined the extent to which plasmin from the hematoma influences the platelet-derived growth factor-BB/platelet-derived growth factor receptor-β system subsequent to intracerebral hemorrhage.

Design: Controlled in vivo laboratory study.

Setting: Animal research laboratory.

Subjects: One hundred and fifty six eight-week-old male CD1 mice.

Interventions: Brain injury was induced by autologous arterial blood or plasmin injection into mouse brains. Small interfering RNA targeting platelet-derived growth factor receptor-β was administered 24 hours before intracerebral hemorrhage. A platelet-derived growth factor receptor antagonist, Gleevec, was administered following intracerebral hemorrhage. A mitogen-activated protein kinase-activated protein kinase 2 inhibitor (KKKALNRQLGVAA) was delivered with platelet-derived growth factor-BB in naïve animals. Platelet-derived growth factor-BB was injected with a plasmin inhibitor (ε-aminocaproic acid) in intracerebral hemorrhage mice. Plasmin-injected mice were given platelet-derived growth factor receptor-β small interfering RNA 24 hours before the operation. Neurological deficits, brain edema, western blots, and immunofluorescence were evaluated.

Measurements and main results: Platelet-derived growth factor receptor-β small interfering RNA attenuated SMemb and intercellular adhesion molecule-1 expression and neutrophil infiltration at 24 hours post injury and reduced neurological deficits and brain edema at 24 and 72 hours following intracerebral hemorrhage. The platelet-derived growth factor receptor antagonist, Gleevec, reduced SMemb and intercellular adhesion molecule-1 expression. Platelet-derived growth factor receptor-β activation led to increased expression of intercellular adhesion molecule-1 and was reversed by KKKALNRQLGVAA in naïve mice. Plasmin inhibition suppressed platelet-derived growth factor receptor-β activation and neutrophil infiltration, whereas exogenous platelet-derived growth factor-BB increased platelet-derived growth factor receptor-β activation, regardless of plasmin inhibition. Platelet-derived growth factor receptor-β small interfering RNA decreased the expression of intercellular adhesion molecule-1 by plasmin injection.

Conclusion: The platelet-derived growth factor-BB/platelet-derived growth factor receptor-β system contributes to neuroinflammation through vascular smooth muscle cell phenotypic transformation near the hematoma via the p38 mitogen-activated protein kinase/mitogen-activated protein kinase-activated protein kinase 2 pathway following intracerebral hemorrhage. Plasmin is hypothesized to be upstream of the proposed neuroinflammatory system. The therapeutic intervention targeting the platelet-derived growth factor-BB/platelet-derived growth factor receptor-β is a novel strategy to prevent plasmin-induced brain injury following intracerebral hemorrhage.

MeSH terms

  • Actins / metabolism
  • Animals
  • Becaplermin
  • Brain Edema / drug therapy
  • Brain Edema / etiology
  • Cerebral Hemorrhage / complications
  • Cerebral Hemorrhage / metabolism*
  • Fibrinolysin / antagonists & inhibitors
  • Fibrinolysin / pharmacology
  • Fibrinolytic Agents / pharmacology
  • Imatinib Mesylate / pharmacology
  • Intercellular Adhesion Molecule-1 / metabolism*
  • Intracellular Signaling Peptides and Proteins / antagonists & inhibitors
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Male
  • Mice
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / metabolism*
  • Neutrophils / physiology
  • Nonmuscle Myosin Type IIB / genetics
  • Nonmuscle Myosin Type IIB / metabolism*
  • Phenotype
  • Protein Serine-Threonine Kinases / antagonists & inhibitors
  • Protein Serine-Threonine Kinases / metabolism
  • Proto-Oncogene Proteins c-sis / metabolism*
  • Proto-Oncogene Proteins c-sis / pharmacology
  • RNA, Small Interfering / pharmacology
  • Receptor, Platelet-Derived Growth Factor beta / genetics
  • Receptor, Platelet-Derived Growth Factor beta / metabolism*
  • Signal Transduction
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Actins
  • Fibrinolytic Agents
  • Intracellular Signaling Peptides and Proteins
  • Proto-Oncogene Proteins c-sis
  • RNA, Small Interfering
  • alpha-smooth muscle actin, mouse
  • Intercellular Adhesion Molecule-1
  • Becaplermin
  • Imatinib Mesylate
  • MAP-kinase-activated kinase 2
  • Receptor, Platelet-Derived Growth Factor beta
  • Protein Serine-Threonine Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Fibrinolysin
  • Nonmuscle Myosin Type IIB