Signals of climate, conspecific density, and watershed features in patterns of homing and dispersal by Pacific salmon

Ecology. 2015 Oct;96(10):2823-33. doi: 10.1890/14-1630.1.

Abstract

It is widely assumed that rates of dispersal in animal populations are plastic in response to intrinsic and extrinsic cues, yet the factors influencing this plasticity are rarely known. This knowledge gap is surprising given the important role of dispersal in facilitating range shifts that may allow populations to persist in a rapidly changing global climate. We used two decades of tagging and recapture data from 19 hatchery populations of Oncorhynchus tshawytscha (Chinook salmon) in the Columbia River, USA, to quantify the effects of regional and local climate conditions, density dependence, watershed features such as area and position on the landscape, and direct anthropogenic influence on dispersal rates by adult salmon during the breeding season. We found that the probability of dispersal, termed "straying" in salmon, is plastic in'response to multiple factors and that populations showed varied responses that were largely idiosyncratic. A regional climate index (Pacific Decadal Oscillation), water temperatures in the mainstem Columbia River that was commonly experience by populations during migration, water temperatures in local subbasins unique to each population during the breeding season, migration distance, and density dependence had the strongest effects on dispersal. Patterns of dispersal plasticity in response to commonly experienced conditions were consistent with gene by environment interactions, though we are tentative about this interpretation given the domesticated history of these populations. Overall, our results warn against attempts to predict future range shifts of migratory species without considering population-specific dispersal plasticity, and also caution against the use of few populations to infer species-level patterns. Ultimately, our results provide evidence that analyses that examine the response of dispersal to single factors may be misleading.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Migration / physiology*
  • Animals
  • Climate*
  • Models, Biological
  • Pacific Ocean
  • Population Density
  • Rivers*
  • Salmon / physiology*
  • Time Factors