3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials.
Keywords: 3D printing; advanced manufacturing; architected design; reactive materials; thermites.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.