To achieve unattended continuous long-term (eg., 1 week) sampling of size-segregated 24-h ambient particulate matter (PM), a sampling strategy of a modified 3-stage rotating drum impactor (RDI) in series with a sequential filter sampler was introduced and verified in a field campaign. Before the field sampling, lab experiment was conducted to test the collection efficiency of the third stage of the RDI using the quartz-fiber filter (QFF) as the substrate. The measured value is 0.36 μm, which is larger than the nominal value 0.1 μm. A fast direct analysis of organic species in all size fractions (<0.36, 0.36-1, 1-2.4, and 2.4-10 μm) of 24-h ambient samples was done using in situ derivatization thermal desorption gas chromatography time-of-flight mass spectrometry (IDTD-GC-TOFMS). A few secondary originated polar markers (dicarboxylic acids, cis-pinonic acid, etc.) were introduced and evaluated using this method for the first time and quantified simultaneously with polycyclic aromatic hydrocarbons (PAH) in the filter samples (<0.36 μm). For the other RDI strip samples (0.36-1, 1-2.4, and 2.4-10 μm), PAH and levoglucosan were quantified. The comparability of two such sampler sets was verified with respect to the PM collection profile of the two RDIs as well as measured concentration of chemical compounds in each sampled size fraction, so that a future epidemiological study on the relationship between the finest PM/its chemical composition and health outcome could be carried out through parallel sampling at two sites. The internal correlations between the size-segregated organic compounds are discussed. Besides, the correlations between the size-segregated organic species and size-segregated particulate number concentration (PNC) as well as meteorological parameter are discussed as well.
Keywords: Chemical speciation; In situ derivatization thermal desorption; PAH; Polar markers; Rotating drum impactor; Size-segregated particulate matter.