[Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize-soybean intercropping systems]

Ying Yong Sheng Tai Xue Bao. 2015 Aug;26(8):2414-20.
[Article in Chinese]

Abstract

In order to explore the effects of maize plant types on dry matter accumulation and yield of soybean, a field experiment was conducted in 2013, including three maize-soybean relay strip intercropping systems. The relay strip intercropping systems were designed as soybean (Gongxuan 1) intercropped with Denghai 605 (RI1), Chuandan 418 (RI2) or Yayu 13 ( RI3), and the monocultured soybean was used as control. The results demonstrated that the dry matter accumulation rates of intercropped soybean in RI2 and RI3 treatments were lower than in RI1 treatment, and the leaf, stem and pod dry matter accumulation of intercropped soybean in RI1 treatment was 17.6%, 16.5% and 13.7% higher than that in RI2 treatment, and 34.6%, 33.1% and 28.4% higher than that in RI3 treatment, respectively. The distribution proportion of leaf and stem of intercropped soybean was in the order of RI1 > RI2 > RI3. However, the trend of the distribution proportion of pod was opposite. Compared with RI2 and RI3, the dry matter translocation amount, translocation proportion, contribution proportion of soybean vegetative organs to pod of soybean were improved in RI, treatment, and the pod per plant, seeds per plant, seeds per pod, yield per plant and yield of soybean in RI, were higher than RI2 and RI3 by 6.8%, 11.5%, 4.4%, 15.9%, 15.6% and 14.3%, 22.2%, 6.7%, 33.4%, 36.8%, respectively. The results showed that the yield was positively related with the accumulation rate of dry matter, dry matter translocation, dry matter translocation ratio and the contribution of dry matter accumulation, and these indices were highest in RI treatment. The results indicated that the compact maize relay intercropped with soybean could effectively regulate the dry matter accumulation, translocation and distribution, and improve the yield of soybean.

MeSH terms

  • Agriculture / methods*
  • Glycine max / growth & development*
  • Plant Leaves / growth & development
  • Plant Stems / growth & development
  • Zea mays / classification*
  • Zea mays / growth & development