Background: Our study aimed to evaluate whether the effect of an intra-arterial vasospasm therapy can be assessed quantitatively by in vivo blood flow analysis using the postprocessing algorithm parametric color coding (PCC).
Methods: We evaluated 17 patients presenting with acute clinical deterioration due to vasospasm following subarachnoidal hemorrhage treated with intra-arterial nimodipine application. Pre- and post-interventional DSA series were post-processed by PCC. The relative time to maximum opacification (rTmax) was calculated in 14 arterially and venously located points of interest. From that data, the pre- and post-interventional cerebral circulation time (CirT) was calculated. Additionally, the arterial vessel diameters were measured. Pre- and post-interventional values were compared and tested for significance, respectively.
Results: Flow analysis revealed in all arterial vessel segments a non-statistically significant prolongation of rTmax after treatment. The mean CirT was 5.62 s (±1.19 s) pre-interventionally and 5.16 s (±0.81 s) post-interventionally, and the difference turned out as statistically significant (p = 0.039). A significantly increased diameter was measurable in all arterial segments post-interventionally.
Conclusion: PCC is a fast applicable imaging technique that allows via real-time and in vivo blood flow analysis a quantitative assessment of the effect of intra-arterial vasospasm therapy. Our results seem to validate in vivo that an intra-arterial nimodipine application induces not only vasodilatation of the larger vessels, but also improves the microcirculatory flow, leading to a shortened cerebral CirT that reaches normal range post-interventionally. Procedural monitoring via PCC offers the option to compare quantitatively different therapy regimes, which allows optimization of existing approaches and implementation of individualized treatment strategies.
Keywords: Cerebral vasospasm; Endovascular treatment; Image postprocessing; Subarachnoidal hemorrhage; Vascular disease.