The scaffold for tissue engineering was fabricated from a binary blend of keratin/alginate. The concentration and ratio of keratin and alginate was optimized by response surface methodology in a scaffold. The structural compatibility between keratin and alginate was examined by X-ray diffractometer and Fourier transforms infrared spectroscopy. Apparent porosity of the scaffold was calculated by Archimedes principles and its observed value of was found 96.25 ± 0.04%. The pore size of the scaffold was observed in the range between 10 and 200 μm. Tensile strength (0.33 ± 0.26 MPa) and percent of elongation at break (23.33 ± 2.52%) are the reported mechanical strength of the scaffold. Positive antimicrobial activity and in vitro degradation further confirms the fabrication of a scaffold required for tissue engineering application.
Keywords: Antimicrobial activity; Mechanical behavior; Porosity; RSM; Scaffold fabrication; Structural characterization.
Copyright © 2015 Elsevier B.V. All rights reserved.