Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate

Int J Biol Macromol. 2016 Apr:85:74-81. doi: 10.1016/j.ijbiomac.2015.12.071. Epub 2015 Dec 24.

Abstract

It is shown that lignosulfonate (LS) can be used as an effective reducing agent for gold ions and simultaneously as a stabilizing agent for gold nanoparticles (AuNPs). When organically modified silica is introduced to the reaction mixture, most of the AuNPs grow on the surface of the silica due to hydrophobic interactions between LS and organic layers covering the solid particles. It was also found that the structure of the organic layer is crucial for the effective deposition of gold nanoparticles onto silica spheres in terms of particle size and gold content in the final SiO2-LS-AuNPs composites. Due to the hydrophobicity of the modified silica it was necessary to carry out the modification in mixed organic/aqueous solvent. The polarity of the organic co-solvent was found to have an effect on the size of the deposited Au-NPs and their quantity. The physical appearance of the obtained hybrids was analyzed by colorimetry, and their structure and composition were evaluated using transmission electron microscopy (TEM). Additionally dispersive and thermal properties were examined by dynamic light scattering (DLS) and thermogravimetry (TG), respectively. The obtained multifunctional hybrid materials exhibits remarkable catalytic activity for the reduction of C.I. Basic Blue 9 (Methylene Blue) by borohydride.

Keywords: Gold nanoparticles; Lignosulfonate; Silica.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Colorimetry
  • Gold / chemistry*
  • Lignin / analogs & derivatives*
  • Lignin / chemistry
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / ultrastructure
  • Particle Size
  • Silicon Dioxide / chemistry*
  • Spectrum Analysis / methods
  • Thermogravimetry

Substances

  • Gold
  • Silicon Dioxide
  • lignosulfuric acid
  • Lignin