Schizophrenia is currently diagnosed by physicians through clinical assessment and their evaluation of patient's self-reported experiences over the longitudinal course of the illness. There is great interest in identifying biologically based markers at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity shows promise in providing individual subject predictive power. The majority of previous studies considered the analysis of functional connectivity during resting-state using only fMRI. However, exclusive reliance on fMRI to generate such networks, may limit inference on dysfunctional connectivity, which is hypothesized to underlie patient symptoms. In this work, we propose a framework for classification of schizophrenia patients and healthy control subjects based on using both fMRI and band limited envelope correlation metrics in MEG to interrogate functional network components in the resting state. Our results show that the combination of these two methods provide valuable information that captures fundamental characteristics of brain network connectivity in schizophrenia. Such information is useful for prediction of schizophrenia patients. Classification accuracy performance was improved significantly (up to ≈ 7%) relative to only the fMRI method and (up to ≈ 21%) relative to only the MEG method.