In this study, we demonstrate the feasibility of predicting hand forces from brain activity recorded with scalp electroencephalography (EEG). Ten able-bodied subjects participated in two tasks: an isometric force production task and a grasp-and-lift task using unconstrained and constrained grasps. We found that EEG electrodes spanning central areas of the scalp were highly correlated to force rate trajectories. Moreover, EEG grand averages in central sites resembled force rate trajectories as opposed to force trajectories. The grasp-and-lift task resulted in higher decoding accuracies than the isometric force production task: across nine subjects, median accuracies for the isometric force production task were r=0.35 whereas median accuracies for unconstrained grasping were r=0.51 and for constrained grasping were r=0.50. Such results could lead to an understanding of the neural representation behind the control of hand forces and could be implemented in the neural control of closed-loop hand-based neuroprostheses.