The role of guanine nucleotides in catecholamine secretion was investigated in alpha-toxin-permeabilized chromaffin cells. The stable GTP analogues, GTP-gamma-S (guanosine 5'-(gamma-thio)triphosphate) and GMP-PNP (guanosine 5'-(beta,gamma-imido)triphosphate), potentiated calcium-evoked catecholamine release in a dose-dependent manner. This effect was reversed by GDP-beta-S (guanosine 5'-(beta-thio)diphosphate) indicating that a GTP-binding protein plays a modulatory role in the calcium-dependent secretory process in chromaffin cells. Calcium and the phosphorylating nucleotide ATP were both necessary for secretion, even in the presence of GTP analogues, suggesting that the activation of a GTP-regulatory protein alone does not trigger exocytosis in these cells. TPA (12-O-tetradecanoylphorbol-13-acetate), a direct activator of protein kinase C, was found to mimic the effects of the GTP analogues, inducing a dose-dependent potentiation of the calcium-evoked release in alpha-toxin-permeabilized cells. Treatment of the permeabilized cells with sphingosine, a potent inhibitor of protein kinase C, completely abolished the stimulatory effects of both TPA and GTP-gamma-S. Moreover, long term incubation of chromaffin cells with TPA, a treatment which depletes cells of protein kinase C activity, suppressed the stimulatory effects of GTP-gamma-S. Protein kinase C is activated when it becomes membrane-bound in the presence of calcium and diacylglycerol; here, GTP-gamma-S was found to enhance the calcium-induced translocation of protein kinase C to membranes in alpha-toxin-permeabilized cells. These results suggest that guanine nucleotides modulate secretion by activating protein kinase C-linked events in chromaffin cells. Furthermore, the potentiation of calcium-induced secretion in alpha-toxin-permeabilized cells following activation of protein kinase C either directly with TPA or indirectly with GTP analogues provides additional support for the concept that protein kinase C may exert a positive control directly on the intracellular exocytotic machinery.