Historically vaccines were produced using whole attenuated or killed pathogens and still a large proportion of current vaccines utilizes such procedure. However, for safety and quality reasons the development of novel vaccines is preferentially based on the selection and use of specific pathogen components which alone are capable of eliciting protective immune responses against the pathogens they derived from. The big challenge for vaccinologists is how to select the right antigens and to combine them with proper immune stimulatory components (adjuvants) in order to induce protective immunity. This Commentary outlines the authors' view on the current and future strategies for the efficient and rapid identification of the most effective protective antigens and adjuvants. Since efficacious subunit-based vaccines against recalcitrant pathogens are likely to require more than one antigen and/or immune stimulator, this poses the problem of how to make such vaccines economically acceptable. In this regard, the authors also present their view of how bacterial Outer Membrane Vesicles (OMVs) could become a promising platform for the development of future vaccines. The unique properties of OMVs might be exploited in the field of infectious diseases and oncology.
Keywords: Outer Membrane Vesicles (OMVs); adjuvants; bacterial vaccines; bioinformatics; cancer vaccines; genomics; high throughput screening; protective antigens; proteomics.