Background: Fluorescence molecular tomography (FMT) is an optical imaging technique that reveals biological processes within small animals through non-invasively reconstructing the distributions of fluorescent agents. The primary problem in FMT with non-stationary fluorescent yield is the increase of the unknown parameters to be reconstructed. In this paper, a method is proposed to reconstruct dynamic fluorescent yield.
Methods: A shape-based reconstruction method that recovers dynamic fluorescent yield with a level set method is proposed for FMT. To reduce the number of unknown parameters, a level set function is introduced to describe the shape of target and a small number of parameters are used to describe the fluorescent yields at different time points.
Results: Results of simulations and phantom experiments demonstrate that the proposed method can recover well the dynamic fluorescent yields, shapes and locations of the target.
Conclusions: The proposed method can handle the cases with non-stationary fluorescent yields and recover the fluorescent yields at each projection angle.