Our purpose was to evaluate the safety and efficacy of (68)Ga-DOTATATE PET/CT compared with (111)In-pentetreotide imaging for diagnosis, staging, and restaging of pulmonary and gastroenteropancreatic neuroendocrine tumors.
Methods: (68)Ga-DOTATATE PET/CT and (111)In-pentetreotide scans were obtained for 78 of 97 consecutively enrolled patients with known or suspected pulmonary or gastroenteropancreatic neuroendocrine tumors. Safety and toxicity were measured by comparing vital signs, serum chemistry values, or acquisition-related medical complications before and after (68)Ga-DOTATATE injection. Added value was determined by changes in treatment plan when (68)Ga-DOTATATE PET/CT results were added to all prior imaging, including (111)In-pentetreotide. Interobserver reproducibility of (68)Ga-DOTATATE PET/CT scan interpretation was measured between blinded and nonblinded interpreters.
Results: (68)Ga-DOTATATE PET/CT and (111)In-pentetreotide scans were significantly different in impact on treatment (P < 0.001). (68)Ga-DOTATATE PET/CT combined with CT or liver MRI changed care in 28 of 78 (36%) patients. Interobserver agreement between blinded and nonblinded interpreters was high. No participant had a trial-related event requiring treatment. Mild, transient events were tachycardia in 1, alanine transaminase elevation in 1, and hyperglycemia in 2 participants. No clinically significant arrhythmias occurred. (68)Ga-DOTATATE PET/CT correctly identified 3 patients for peptide-receptor radiotherapy incorrectly classified by (111)In-pentetreotide.
Conclusion: (68)Ga-DOTATATE PET/CT was equivalent or superior to (111)In-pentetreotide imaging in all 78 patients. No adverse events requiring treatment were observed. (68)Ga-DOTATATE PET/CT changed treatment in 36% of participants. Given the lack of significant toxicity, lower radiation exposure, and improved accuracy compared with (111)In-pentetreotide, (68)Ga-DOTATATE imaging should be used instead of (111)In-pentetreotide imaging where available.
Keywords: 111In-pentetreotide; 68Ga-DOTATATE; carcinoid; neuroendocrine; toxicity.
© 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.