Allograft outcome depends on a range of factors, including donor age, the allo-immune response, ischemia-reperfusion injury, and interstitial fibrosis of the allograft. Changes in the epigenome, and in DNA methylation in particular, have been implicated in each of these processes, in either the kidney or other organ systems. This review provides a primer for DNA methylation analyses and a discussion of the strengths and weaknesses of current studies, but it is also a perspective for future DNA methylation research in kidney transplantation. We present exciting prospects for leveraging DNA methylation analyses as a tool in kidney biology research, and as a diagnostic or prognostic marker for predicting allograft quality and success. Topics discussed include DNA methylation changes in aging and in response to hypoxia and oxidative stress upon ischemia-reperfusion injury. Moreover, emerging evidence suggests that DNA methylation contributes to organ fibrosis and that systemic DNA methylation alterations correlate with the rate of kidney function decline in patients with chronic kidney disease and end-stage renal failure. Monitoring or targeting the epigenome could therefore reveal novel therapeutic approaches in transplantation and open up paths to biomarker discovery and targeted therapy.
Keywords: Interstitial fibrosis and tubular atrophy; basic (laboratory) research, science; biomarker, cell death; genetics, kidney transplantation, nephrology; genomics; senescence; ischemia reperfusion injury (IRI); translational research, science.
© Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.