Ectomycorrhizae create a multitrophic ecosystem formed by the association between tree roots, mycelium of the ectomycorrhizal fungus, and a complex microbiome. Despite their importance in the host tree's physiology and in the functioning of the ectomycorrhizal symbiosis, detailed studies on ectomycorrhiza-associated bacterial community composition and their temporal dynamics are rare. Our objective was to investigate the composition and dynamics of Tuber melanosporum ectomycorrhiza-associated bacterial communities from summer to winter seasons in a Corylus avellana tree plantation. We used 16S ribosomal RNA (rRNA)-based pyrosequencing to compare the bacterial community structure and the richness in T. melanosporum's ectomycorrhizae with those of the bulk soil. The T. melanosporum ectomycorrhizae harbored distinct bacterial communities from those of the bulk soil, with an enrichment in Alpha- and Gamma-proteobacteria. In contrast to the bacterial communities of truffle ascocarps that vastly varies in composition and richness during the maturation of the fruiting body and to those from the bulk soil, T. melanosporum ectomycorrhiza-associated bacterial community composition stayed rather stable from September to January. Our results fit with a recent finding from the same experimental site at the same period that a continuous supply of carbohydrates and nitrogen occurs from ectomycorrhizae to the fruiting bodies during the maturation of the ascocarps. We propose that this creates a stable niche in the ectomycorrhizosphere although the phenology of the tree changes.
Keywords: 16S rRNA-based pyrosequencing; Bacterial communities; Ectomycorrhizosphere; Soil-ectomycorrhizae interface; Temporal changes; Tuber melanosporum.