Background: Sepsis-induced acute lung injury (ALI) is characterized by fibrin deposition, which indicates the local activation of coagulation. Tissue factor (TF), expressed in the pulmonary microvasculature, acts as a critical initiator of blood coagulation and ALI in sepsis. The molecular mechanism of lipopolysaccharide (LPS)-induced TF expression in endothelial cells (ECs), however, has not been determined. In this study, we implicate the Rho-associated protein kinase (ROCK)/Yes associated protein (YAP)/early growth response (Egr-1) signaling pathway in LPS-induced TF expression in vitro and in sepsis-induced ALI in vivo.
Methods: Human umbilical vein ECs incubated with LPS were pretreated with or without the ROCK inhibitor Y-27632, a YAP small, interfering RNA (siRNA) and an Egr-1 siRNA. ROCK, YAP and Egr-1 signaling-induced protein expression was investigated by Western blot. The LPS-induced activation of YAP was analyzed by an immunofluorescent assay. Furthermore, we intratracheally injected YAP siRNA to assess septic ALI in mice by hematoxylin and eosin staining.
Results: LPS rapidly induced ROCK activation and increased TF expression in ECs. LPS caused YAP shuttling into the nuclei of ECs and combined with Egr-1 via the activation of ROCK. Furthermore, the LPS-mediated TF expression increase was prevented by ROCK inactivation, YAP knockdown and Egr-1 depletion, suggesting that LPS-induced TF expression is closely associated with the ROCK/YAP/Egr-1 signaling pathway in ECs. Finally, an intratracheal injection of YAP siRNA relieved lung injury in septic mice.
Conclusion: This study not only suggests that ROCK/YAP/Egr-1 signaling regulates TF expression after stimulation with LPS in ECs, but it also indicates that LPS-induced activation of YAP signaling plays an important role in septic ALI in mice. Our findings provide a new insight into the pathogenic mechanism of TF expression, which is closely linked to septic ALI, and YAP signaling is considered to be a novel target for therapeutic intervention under septic conditions.
Copyright © 2016 Elsevier Inc. All rights reserved.