Aims: Ezrin connects proteins from the plasma membrane to the subcortical cytoskeleton, and contributes to epithelial integrity by interacting with the cell-cell adhesion molecule E-cadherin. In the liver, ezrin is restricted to cholangiocytes, where it regulates biliary secretory functions. During carcinogenesis, ezrin expression is impaired and associated with enhancement of cell migratory activity in cancer cells; therefore, we aimed to analyse ezrin in cholangiocarcinogenesis.
Methods and results: Ezrin expression was evaluated by immunohistochemistry on tissue microarrays from 94 surgical specimens of intrahepatic cholangiocarcinoma (CCA), and correlated with clinicopathological factors and E-cadherin expression. Ezrin function was also analysed in human CCA cell lines. In CCA, ezrin was negative/weakly expressed in 49 cases (52%) and moderately/strongly expressed in 45 cases (48%), mostly in cell cytoplasm. The negative/weak expression of ezrin was more frequent in peripheral than in perihilar CCA (P = 0.002), and was associated with high tumour size (P = 0.001), low mucus secretion (P = 0.042), the presence of satellite nodules (P = 0.024), and ectopic cytoplasmic expression of E-cadherin (P = 0.005). In vitro, silencing of ezrin in CCA cells caused internalization of E-cadherin and favoured cell migration.
Conclusions: Ezrin is down-regulated during cholangiocarcinogenesis, and its loss results in a more aggressive phenotype.
Keywords: E-cadherin; cellular biology; cholangiocarcinoma; ezrin; immunohistochemistry.
© 2016 John Wiley & Sons Ltd.