Neuroimaging studies have started to explore the role of food characteristics (e.g., calorie-content) and psychological factors (e.g., restrained eating, craving) for the human appetitive system, motivated by the significant health implications of food-choice, overeating and overweight/obesity. However, one key aspect of modern food environments, food availability, especially of high energy foods, has not been adequately modeled in experimental research. Food that is immediately available for consumption could elicit stronger reward system activity and associated cognitive control than food that is not currently available for consumption and this could vary as a function of energy density. To examine this question, 32 healthy participants (16 women) underwent functional magnetic resonance imaging while passively viewing available foods - i.e. foods that could be eaten during and after the experiment - and unavailable foods of either high or low-caloric density in a 2 × 2 design. Available compared to unavailable foods elicited higher palatability ratings as well as stronger neural activation in the orbitofrontal cortex (OFC), amygdala, and left caudate nucleus as well as in the anterior cingulate cortex (ACC) - and thus structures implicated in reward and appetitive motivation as well as cognitive control, respectively. Availability effects in the caudate were mainly attributable to the high calorie condition (availability × calorie density interaction). These neuroimaging results support the contention that foods are particularly rewarding when immediately available and particularly so when high in caloric density. Thus, our results are consistent with health promoting interventions utilizing a nudging approach, i.e. aiming at decreasing accessibility of high calorie and increasing accessibility of low calorie foods in daily life. Results also imply that controlling/manipulating food availability may be an important methodological aspect in neuroscientific eating research.
Keywords: Appetite; Availability; Eating behavior; Food picture viewing; High calorie; Hunger; Low caloric; Nudging; Orbitofrontal cortex; Restraint eating; Reward system; Striatum; fMRI.
Copyright © 2016 Elsevier Ltd. All rights reserved.