Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli

Soc Cogn Affect Neurosci. 2016 Apr;11(4):693-702. doi: 10.1093/scan/nsw008. Epub 2016 Jan 21.

Abstract

Spontaneous activity levels prior to stimulus presentation can determine how that stimulus will be perceived. It has also been proposed that such spontaneous activity, particularly in the default-mode network (DMN), is involved in self-related processing. We therefore hypothesised that pre-stimulus activity levels in the DMN predict whether a stimulus is judged as self-related or not. Participants were presented in the MRI scanner with a white noise stimulus that they were instructed contained their name or another. They then had to respond with which name they thought they heard. Regions where there was an activity level difference between self and other response trials 2 s prior to the stimulus being presented were identified. Pre-stimulus activity levels were higher in the right temporoparietal junction, the right temporal pole and the left superior temporal gyrus in trials where the participant responded that they heard their own name than trials where they responded that they heard another. Pre-stimulus spontaneous activity levels in particular brain regions, largely overlapping with the DMN, predict the subsequent judgement of stimuli as self-related. This extends our current knowledge of self-related processing and its apparent relationship with intrinsic brain activity in what can be termed a rest-self overlap.

Keywords: default-mode network; own name; pre-stimulus activity; rest–stimulus interaction; self-related processing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Arousal / physiology*
  • Attention / physiology*
  • Auditory Perception / physiology*
  • Awareness / physiology
  • Brain / physiology*
  • Brain Mapping
  • Female
  • Humans
  • Imaging, Three-Dimensional
  • Magnetic Resonance Imaging
  • Male
  • Nerve Net / physiology*
  • Perceptual Masking / physiology
  • Recognition, Psychology / physiology*
  • Reference Values
  • Young Adult