Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections

J Med Chem. 2016 Jul 14;59(13):5929-69. doi: 10.1021/acs.jmedchem.5b01698. Epub 2016 Feb 18.

Abstract

Infections with Pseudomonas aeruginosa have become a concerning threat in hospital-acquired infections and for cystic fibrosis patients. The major problem leading to high mortality lies in the appearance of drug-resistant strains. Therefore, a vast number of approaches to develop novel anti-infectives is currently pursued. These diverse strategies span from killing (new antibiotics) to disarming (antivirulence) the pathogen. Particular emphasis lies on the development of compounds that inhibit biofilms formed in chronic infections to restore susceptibility toward antibiotics. Numerous promising results are summarized in this perspective. Antibiotics with a novel mode of action will be needed to avoid cross resistance against currently used therapeutic agents. Importantly, antivirulence drugs are expected to yield a significantly reduced rate of resistance development. Most developments are still far from the application. It can however be expected that combination therapies, also containing antivirulence agents, will pave the way toward novel treatment options against P. aeruginosa.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology*
  • Anti-Bacterial Agents / therapeutic use
  • Biofilms / drug effects
  • Drug Discovery / methods*
  • Humans
  • Models, Molecular
  • Molecular Targeted Therapy / methods*
  • Pseudomonas Infections / drug therapy*
  • Pseudomonas Infections / metabolism
  • Pseudomonas Infections / microbiology
  • Pseudomonas aeruginosa / drug effects*
  • Pseudomonas aeruginosa / pathogenicity
  • Pseudomonas aeruginosa / physiology
  • Quorum Sensing / drug effects

Substances

  • Anti-Bacterial Agents