Heat shock protein 90 (Hsp90) is an ATP dependent molecular chaperone protein whose function is critical for maintaining several key proteins involved in survival and proliferation of cancer cells. PU-H71 (1), is a potent purine-scaffold based ATP pocket binding Hsp90 inhibitor which has been shown to have potent activity in a broad range of in vivo cancer models and is currently in Phase I clinical trials in patients with advanced solid malignancies, lymphomas, and myeloproliferative neoplasms. In this report, we describe the radiosynthesis of [(124)I]-PU-H71(5); this was synthesized from the corresponding Boc-protected stannane precursor 3 by iododestannylation with [(124)I]-NaI using chloramine-T as an oxidant for 2 min, followed by Boc deprotection with 6 N HCl at 50 °C for 30 min to yield the final compound. The final product 5 was purified using HPLC and was isolated with an overall yield of 55 ± 6% (n = 6, isolated) from 3, and >98% purity and an average specific activity of 980 mCi/µmol. Our report sets the stage for the introduction of [(124)I]-PU-H71 as a potential non-invasive probe for understanding biodistribution and pharmacokinetics of PU-H71 in living subjects using positron emission tomography imaging.
Keywords: PET; PU-H71; cancer; heat shock protein 90; iodine-124; iododestannylation; purine; radiotracer.
Copyright © 2016 John Wiley & Sons, Ltd.