Rapid assessment of shock in a nonhuman primate model of uncontrolled hemorrhage: Association of traditional and nontraditional vital signs to mortality risk

J Trauma Acute Care Surg. 2016 Apr;80(4):610-6. doi: 10.1097/TA.0000000000000963.

Abstract

Background: Heart rate (HR), systolic blood pressure (SBP) and mean arterial pressure (MAP) are traditionally used to guide patient triage and resuscitation; however, they correlate poorly to shock severity. Therefore, improved acute diagnostic capabilities are needed. Here, we correlated acute alterations in tissue oxygen saturation (StO2) and end-tidal carbon dioxide (ETCO2) to mortality in a rhesus macaque model of uncontrolled hemorrhage.

Methods: Uncontrolled hemorrhage was induced in anesthetized rhesus macaques by a laparoscopic 60% left-lobe hepatectomy (T = 0 minute). StO2, ETCO2, HR, as well as invasive SBP and MAP were continuously monitored through T = 480 minutes. At T = 120 minutes, bleeding was surgically controlled, and blood loss was quantified. Data analyses compared nonsurvivors (expired before T = 480 minutes, n = 5) with survivors (survived to T = 480 minutes, n = 11) using repeated-measures analysis of variance with Bonferroni correction. All p < 0.05 was considered statistically significant. Results were reported as mean ± SEM.

Results: Baseline values were equivalent between groups for each parameter. In nonsurvivors versus survivors at T = 5 minutes, StO2 (55% ± 10% vs. 78% ± 3%, p = 0.02) and ETCO2 (15 ± 2 vs. 25 ± 2 mm Hg, p = 0.0005) were lower, while MAP (18 ± 1 vs. 23 ± 2 mm Hg, p = 0.2), SBP (26 ± 2 vs. 34 ± 3 mm Hg, p = 0.4), and HR (104 ± 13 vs. 105 ± 6 beats/min, p = 0.3) were similar. Association of values over T = 5-30 minutes to mortality demonstrated StO2 and ETCO2 equivalency with a significant group effect (p ≤ 0.009 for each parameter; R(2) = 0.92 and R(2) = 0.90, respectively). MAP and SBP associated with mortality later into the shock period (p < 0.04 for each parameter; R(2) = 0.91 and R(2) = 0.89, respectively), while HR yielded the lowest association (p = 0.8, R(2) = 0.83).

Conclusion: Acute alterations in StO2 and ETCO2 strongly associated with mortality and preceded those of traditional vital signs. The continuous, noninvasive aspects of Food and Drug Administration-approved StO2 and ETCO2 monitoring devices provide logistical benefits over other methodologies and thus warrant further investigation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Arterial Pressure / physiology
  • Blood Pressure / physiology
  • Carbon Dioxide / metabolism
  • Disease Models, Animal
  • Heart Rate / physiology
  • Macaca mulatta
  • Male
  • Monitoring, Physiologic
  • Oxygen / blood
  • Resuscitation
  • Shock, Hemorrhagic / mortality
  • Shock, Hemorrhagic / physiopathology*
  • Shock, Hemorrhagic / therapy
  • Vital Signs*

Substances

  • Carbon Dioxide
  • Oxygen