Purpose: Compared with photon radiation (XRT), proton beam radiation therapy (PBRT) reduces dose to normal tissues, which may lead to better neurocognitive outcomes. We compared change in intelligence quotient (IQ) over time in pediatric patients with brain tumors treated with PBRT versus XRT.
Patients and methods: IQ scores were available for 150 patients (60 had received XRT, 90 had received PBRT). Linear mixed models examined change in IQ over time since radiation therapy (RT) by RT group, controlling for demographic/clinical characteristics. Craniospinal and focal RT subgroups were also examined.
Results: In the PBRT group, no change in IQ over time was identified (P = .130), whereas in the XRT group, IQ declined by 1.1 points per year (P = .004). IQ slopes did not differ between groups (P = .509). IQ was lower in the XRT group (by 8.7 points) versus the PBRT group (P = .011). In the craniospinal subgroup, IQ remained stable in both the PBRT (P = .203) and XRT groups (P = .060), and IQ slopes did not differ (P = .890). IQ was lower in the XRT group (by 12.5 points) versus the PBRT group (P = .004). In the focal subgroup, IQ scores remained stable in the PBRT group (P = .401) but declined significantly in the XRT group by 1.57 points per year (P = .026). IQ slopes did not differ between groups (P = .342).
Conclusion: PBRT was not associated with IQ decline or impairment, yet IQ slopes did not differ between the PBRT and XRT groups. It remains unclear if PBRT results in clinically meaningful cognitive sparing that significantly exceeds that of modern XRT protocols. Additional long-term data are needed to fully understand the neurocognitive impact of PBRT in survivors of pediatric brain tumors.
© 2016 by American Society of Clinical Oncology.