Purpose: Aberrant DNA content has been discussed as a potential prognostic feature in prostate cancer.
Experimental design: We analyzed the clinical significance of DNA ploidy in combination with prognostic relevant deletions of PTEN and 6q15 in 3,845 prostate cancers.
Result: The DNA status was diploid in 67.8%, tetraploid in 25.6%, and aneuploid in 6.8% of tumors, and deletions of PTEN and 6q15 occurred in 17.8% and 20.3% of tumors. Abnormal DNA content and deletions were linked to high Gleason score, advanced tumor stage, and positive nodal stage (P < 0.0001 each). The risk of PSA recurrence increased from diploid to tetraploid and from tetraploid to aneuploid DNA status (P < 0.0001 each). However, 40% of patients with Gleason score ≥4+4 and 55% of patients with PSA recurrence had diploid cancers. This fraction decreased to 21% (Gleason ≥4+4) and 29% (PSA recurrence) if PTEN and/or 6q deletion data were added to ploidy data to identify cancers with an aberrant DNA status. The significance of combining both deletions and ploidy was further demonstrated in a combined recurrence analysis. Presence of deletions increased the risk of PSA recurrence in diploid (P < 0.0001), tetraploid (P < 0.0001), and aneuploid cancers (P = 0.0049), and the combination of ploidy data and deletions provided clinically relevant information beyond the CAPRA-S nomogram. Multivariate modeling including preoperatively and postoperatively available parameters identified the "combined DNA status" as a strong independent predictor of poor patient outcome.
Conclusions: The combinatorial DNA content analysis involving general (ploidy) and specific events (deletions) has the potential for clinical utility in prostate cancer. Clin Cancer Res; 22(11); 2802-11. ©2016 AACR.
©2016 American Association for Cancer Research.