A spatial bias in brain PET/MR exists compared with PET/CT, because of MR-based attenuation correction. We performed an evaluation among 4 institutions, 3 PET/MR systems, and 4 PET/CT systems using an anthropomorphic brain phantom, hypothesizing that the spatial bias would be minimized with CT-based attenuation correction (CTAC).
Methods: The evaluation protocol was similar to the quantification of changes in neurologic PET studies. Regional analysis was conducted on 8 anatomic volumes of interest (VOIs) in gray matter on count-normalized, resolution-matched, coregistered data. On PET/MR systems, CTAC was applied as the reference method for attenuation correction.
Results: With CTAC, visual and quantitative differences between PET/MR and PET/CT systems were minimized. Intersystem variation between institutions was +3.42% to -3.29% in all VOIs for PET/CT and +2.15% to -4.50% in all VOIs for PET/MR. PET/MR systems differed by +2.34% to -2.21%, +2.04% to -2.08%, and -1.77% to -5.37% when compared with a PET/CT system at each institution, and these differences were not significant (P ≥ 0.05).
Conclusion: Visual and quantitative differences between PET/MR and PET/CT systems can be minimized by an accurate and standardized method of attenuation correction. If a method similar to CTAC can be implemented for brain PET/MRI, there is no reason why PET/MR should not perform as well as PET/CT.
Keywords: PET/CT; PET/MR; attenuation correction; phantom; quantification.
© 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.