Metallothioneins (MTs) are a family of low molecular-weight and cysteine-rich metalloproteins that regulate metal metabolism and protect cells from oxygen free radicals. Recent studies suggested that MTs have some anti-inflammatory effects. However, the role of MTs in post-burn inflammation remains unclear. This study is designed to investigate the role of MTs in post-burn inflammation in a mouse burn model. MT-I/II null (-/-) and C57BL/6 wild-type (WT) mice were randomly divided into sham burn, burn, Zn treated, and Zn-MT-2 treated groups. The inflammatory cytokines levels were measured by enzyme-linked immunosorbent assay (ELISA). Myeloperoxidase (MPO) activity was determined by spectrophotometry. In in vitro study, exogenous MT-2 was added to macrophages that were stimulated with burn serum in the presence or absence of a p38 MAPK inhibitor SB203580. The IL-6 and TNF-α messenger RNA (mRNA) expression were detected by quantitative real-time polymerase chain reaction. The levels of p38 expression were determined by Western blot. Burn induced increased inflammatory cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factors-α, and macrophage chemoattractant protein-1 production in burn wound and serum. The MPO activities in the lung and heart were also increased after burn. These effects were significantly more prominent in MT (-/-) mice than in WT mice. Furthermore, these effects were inhibited by administration of exogenous MT-2 to both WT and MT (-/-) mice. Exogenous MT-2 inhibited the p38 expression and abrogated the increase of IL-6 and TNF-α mRNA expression from macrophages that were stimulated with burn serum. The effect of MT-2 was not further strengthened in the presence of SB203580. MTs may have a protective role against post-burn inflammation and inflammatory organ damage, at least partly through inhibiting the p38 MAPK signaling.
Keywords: burn; inflammation; metallothionein; p38.