Non-coding (nc)RNAs are divided into small ncRNAs and long ncRNAs (lncRNAs). MicroRNAs (miRNAs) are small ncRNAS which are around 22 nucleotides in length that mediate post-transcriptional gene silencing. LncRNAs are greater than 200 bp in length. Each ncRNA can have multiple targets and can be regulated by multiple genetic factors. Because ncRNAs are not translated into proteins, they can only be detected at the nucleic acid level by in situ hybridization, by RT-PCR, or by sequencing which makes their detection more challenging in the routine pathology laboratory. A great deal of new information has accumulated about miRNAs in thyroid tissues during the past decade. Some of these studies have shown that deregulation of miRNAs may be useful in diagnostic pathology. Information about the role of lncRNA in the development of thyroid tumors is in the early stages of development, but new information is accumulating rapidly. In this review, we will discuss the recent progress in our understanding of the relationship between ncRNAs and the development of thyroid cancers and the potential uses of ncRNAs in the diagnosis and prognosis of thyroid tumors.
Keywords: In situ hybridization; MicroRNA; Non-coding RNA; Thyroid; Thyroid carcinoma; lncRNA.