Synthesis and evaluation of orally active small molecule HIV-1 Nef antagonists

Bioorg Med Chem Lett. 2016 Mar 1;26(5):1480-1484. doi: 10.1016/j.bmcl.2016.01.043. Epub 2016 Jan 21.

Abstract

The HIV-1 Nef accessory factor enhances viral replication and promotes immune system evasion of HIV-infected cells, making it an attractive target for drug discovery. Recently we described a novel class of diphenylpyrazolodiazene compounds that bind directly to Nef in vitro and inhibit Nef-dependent HIV-1 infectivity and replication in cell culture. However, these first-generation Nef antagonists have several structural liabilities, including an azo linkage that led to poor oral bioavailability. The azo group was therefore replaced with either a one- or two-carbon linker. The resulting set of non-azo analogs retained nanomolar binding affinity for Nef by surface plasmon resonance, while inhibiting HIV-1 replication with micromolar potency in cell-based assays without cytotoxicity. Computational docking studies show that these non-azo analogs occupy the same predicted binding site within the HIV-1 Nef dimer interface as the original azo compound. Computational methods also identified a hot spot for inhibitor binding within this site that is defined by conserved HIV-1 Nef residues Asp108, Leu112, and Pro122. Pharmacokinetic evaluation of the non-azo B9 analogs in mice showed that replacement of the azo linkage dramatically enhanced oral bioavailability without substantially affecting plasma half-life or clearance. The improved oral bioavailability of non-azo diphenylpyrazolo Nef antagonists provides a starting point for further drug lead optimization in support of future efficacy testing in animal models of HIV/AIDS.

Keywords: Antiretroviral drug discovery; HIV Nef; HIV-1; Nef inhibitors.

MeSH terms

  • Administration, Oral
  • Animals
  • Anti-HIV Agents / administration & dosage
  • Anti-HIV Agents / chemical synthesis*
  • Anti-HIV Agents / pharmacology*
  • Binding Sites / drug effects
  • Dose-Response Relationship, Drug
  • HIV-1 / drug effects
  • Mice
  • Microbial Sensitivity Tests
  • Models, Molecular
  • Molecular Conformation
  • Molecular Docking Simulation
  • Small Molecule Libraries / administration & dosage
  • Small Molecule Libraries / chemical synthesis
  • Small Molecule Libraries / pharmacology*
  • Structure-Activity Relationship
  • Tumor Cells, Cultured
  • Virus Replication / drug effects
  • nef Gene Products, Human Immunodeficiency Virus / antagonists & inhibitors*

Substances

  • Anti-HIV Agents
  • Small Molecule Libraries
  • nef Gene Products, Human Immunodeficiency Virus