Using desirability function, four indexes including mycelium dry weight, intracellular polysaccharide, adenosine and mannitol yield were uniformed into one expected value (Da) which further served as the assessment criteria. In our present study, Plackett-Burman design was applied to evaluate the effects of eight variables including initial pH, rotating speed, culture temperature, inoculum size, ventilation volume, culture time, inoculum age and loading volume on Da value during Marasmius androsaceus submerged fermentation via a five-liter fermentor. Culture time, initial pH and rotating speed were found to influence Da value significantly and were further optimized by Box-Behnken design. Results obtained from Box-Behnken design were analyzed by both response surface regression (Design-Expert.V8.0.6.1 software) and artificial neural network combining the genetic algorithm method (Matlab2012a software). After comparison, the optimum M. androsaceus submerged fermentation conditions via a five-liter fermentor were obtained as follows: initial pH of 6.14, rotating speed of 289.3 rpm, culture time of 6.285 days, culture temperature of 26 °C, inoculum size of 5%, ventilation volume of 200 L/h, inoculum age of 4 days, and loading volume of 3.5 L/5 L. The predicted Da value of the optimum model was 0.4884 and the average experimental Da value was 0.4760. The model possesses well fitness and predictive ability.
Keywords: Desirability function; Marasmius androsaceus; Neural network combining genetic algorithm; Plackett–Burman design; Submerged fermentation.