We combined synchrotron-based infrared spectroscopy, Raman scattering, and diamond anvil cell techniques with complementary lattice dynamics calculations to reveal local lattice distortions in Mn[N(CN)2]2 under compression. Strikingly, we found a series of transitions involving octahedral counter-rotations, changes in the local Mn environment, and deformations of the superexchange pathway. In addition to reinforcing magnetic property trends, these pressure-induced local lattice distortions may provide an avenue for the development of new functionalities.