Improving the clinical impact of biomaterials in cancer immunotherapy

Oncotarget. 2016 Mar 29;7(13):15421-43. doi: 10.18632/oncotarget.7304.

Abstract

Immunotherapies for cancer have progressed enormously over the past few decades, and hold great promise for the future. The successes of these therapies, with some patients showing durable and complete remission, demonstrate the power of harnessing the immune system to eradicate tumors. However, the effectiveness of current immunotherapies is limited by hurdles ranging from immunosuppressive strategies employed by tumors, to inadequate specificity of existing therapies, to heterogeneity of disease. Further, the vast majority of approved immunotherapies employ systemic delivery of immunomodulators or cells that make addressing some of these challenges more difficult. Natural and synthetic biomaterials - such as biocompatible polymers, self-assembled lipid particles, and implantable biodegradable devices - offer unique potential to address these hurdles by harnessing the benefits of therapeutic targeting, tissue engineering, co-delivery, controlled release, and sensing. However, despite the enormous investment in new materials and nanotechnology, translation of these ideas to the clinic is still an uncommon outcome. Here we review the major challenges facing immunotherapies and discuss how the newest biomaterials and nanotechnologies could help overcome these challenges to create new clinical options for patients.

Keywords: Immune response; Immunity; Immunology and Microbiology Section; biomaterials; cancer immunotherapy; cancer vaccine; nanotechnology; translational medicine.

Publication types

  • Review

MeSH terms

  • Animals
  • Biocompatible Materials / pharmacology*
  • Humans
  • Immunotherapy / instrumentation
  • Immunotherapy / methods*
  • Immunotherapy / trends*
  • Nanotechnology / methods
  • Nanotechnology / trends
  • Neoplasms / therapy*

Substances

  • Biocompatible Materials