Bacterial Succession in the Broiler Gastrointestinal Tract

Appl Environ Microbiol. 2016 Apr 4;82(8):2399-2410. doi: 10.1128/AEM.02549-15. Print 2016 Apr.

Abstract

A feeding trial was performed with broilers receiving a diet of wheat-based feed (WBF), maize-based feed (MBF), or maize-based concentrates supplemented with 15% or 30% crimped kernel maize silage (CKMS-15 or CKMS-30, respectively). The aim of the study was to investigate the bacterial community compositions of the crop, gizzard, ileum, and cecum contents in relation to the feeding strategy and age (8, 15, 22, 25, 29, or 36 days). Among the four dietary treatments, bacterial diversity was analyzed for MBF and CKMS-30 by 454 pyrosequencing of the 16S rRNA gene. Since the diets had no significant influence on bacterial diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and increased bacterial diversity were observed.Lactobacillaceae(belonging mainly to the genus Lactobacillus) represented most of the Firmicutesat all ages and in all segments of the gut except the cecum. The development of a "mature" microbiota in broilers occurred during the period from days 15 to 22. Striking increases in the relative abundances of Lactobacillus salivarius(17 to 36%) and clostridia (11 to 18%), and a concomitant decrease in the relative abundance of Lactobacillus reuteri, were found in the ileum after day 15. The concentration of deconjugated bile salts increased in association with the increased populations of L. salivarius and clostridia. Both L. salivarius and clostridia deconjugate bile acids, and increases in the abundances of these bacteria might be associated with growth reduction and gastrointestinal (GI) disorders occurring in the critical period of broiler life between days 20 and 30.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteria / classification*
  • Bacteria / genetics*
  • Chickens / microbiology*
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / genetics
  • DNA, Ribosomal / chemistry
  • DNA, Ribosomal / genetics
  • Diet / methods*
  • Gastrointestinal Microbiome*
  • Gastrointestinal Tract / microbiology*
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA

Substances

  • DNA, Bacterial
  • DNA, Ribosomal
  • RNA, Ribosomal, 16S