Mid-infrared spectroscopy for protein analysis: potential and challenges

Anal Bioanal Chem. 2016 Apr;408(11):2875-89. doi: 10.1007/s00216-016-9375-5. Epub 2016 Feb 16.

Abstract

Mid-infrared (MIR) spectroscopy investigates the interaction of MIR photons with both organic and inorganic molecules via the excitation of vibrational and rotational modes, providing inherent molecular selectivity. In general, infrared (IR) spectroscopy is particularly sensitive to protein structure and structural changes via vibrational resonances originating from the polypeptide backbone or side chains; hence information on the secondary structure of proteins can be obtained in a label-free fashion. In this review, the challenges for IR spectroscopy for protein analysis are discussed as are the potential and limitations of different IR spectroscopic techniques enabling protein analysis. In particular, the amide I spectral range has been widely used to study protein secondary structure, conformational changes, protein aggregation, protein adsorption, and the formation of amyloid fibrils. In addition to representative examples of the potential of IR spectroscopy in various fields related to protein analysis, the potential of protein analysis taking advantage of miniaturized MIR systems, including waveguide-enhanced MIR sensors, is detailed.

Keywords: Amyloid; Conformational changes; Infrared spectroscopy; Mid-infrared; Proteins; Secondary structure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Circular Dichroism
  • Proteins / analysis*
  • Spectrophotometry, Infrared / methods*

Substances

  • Proteins