Conservation of the Ethiopian church forests: Threats, opportunities and implications for their management

Sci Total Environ. 2016 May 1:551-552:404-14. doi: 10.1016/j.scitotenv.2016.02.034. Epub 2016 Feb 13.

Abstract

In the central and northern highlands of Ethiopia, native forest and forest biodiversity is almost confined to sacred groves associated with churches. Local communities rely on these 'church forests' for essential ecosystem services including shade and fresh water but little is known about their region-wide distribution and conservation value. We (1) performed the first large-scale spatially-explicit assessment of church forests, combining remote-sensing and field data, to assess the number of forests, their size, shape, isolation and woody plant species composition, (2) determined their plant communities and related these to environmental variables and potential natural vegetation, (3) identified the main challenges to biodiversity conservation in view of plant population dynamics and anthropogenic disturbances, and (4) present guidelines for management and policy. The 394 forests identified in satellite images were on average ~2ha in size and generally separated by ~2km from the nearest neighboring forest. Shape complexity, not size, decreased from the northern to the central highlands. Overall, 148 indigenous tree, shrub and liana species were recorded across the 78 surveyed forests. Patch α-diversity increased with mean annual precipitation, but typically only 25 woody species occurred per patch. The combined results showed that >50% of tree species present in tropical northeast Africa were still present in the 78 studied church forests, even though individual forests were small and relatively species-poor. Tree species composition of church forests varied with elevation and precipitation, and resembled the potential natural vegetation. With a wide distribution over the landscape, these church forests have high conservation value. However, long-term conservation of biodiversity of individual patches and evolutionary potential of species may be threatened by isolation, small sizes of tree species populations and disturbance, especially when considering climate change. Forest management interventions are essential and should be supported by environmental education and other forms of public engagement.

Keywords: Africa; Forest fragments; Landscape ecology; Relic vegetation; Remote sensing; Sacred groves.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodiversity
  • Climate Change
  • Conservation of Natural Resources / methods*
  • Ethiopia
  • Forests*